Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation.

نویسندگان

  • Takafumi Wataya
  • Satoshi Ando
  • Keiko Muguruma
  • Hanako Ikeda
  • Kiichi Watanabe
  • Mototsugu Eiraku
  • Masako Kawada
  • Jun Takahashi
  • Nobuo Hashimoto
  • Yoshiki Sasai
چکیده

Embryonic stem (ES) cells differentiate into neuroectodermal progenitors when cultured as floating aggregates in serum-free conditions. Here, we show that strict removal of exogenous patterning factors during early differentiation steps induces efficient generation of rostral hypothalamic-like progenitors (Rax(+)/Six3(+)/Vax1(+)) in mouse ES cell-derived neuroectodermal cells. The use of growth factor-free chemically defined medium is critical and even the presence of exogenous insulin, which is commonly used in cell culture, strongly inhibits the differentiation via the Akt-dependent pathway. The ES cell-derived Rax(+) progenitors generate Otp(+)/Brn2(+) neuronal precursors (characteristic of rostral-dorsal hypothalamic neurons) and subsequently magnocellular vasopressinergic neurons that efficiently release the hormone upon stimulation. Differentiation markers of rostral-ventral hypothalamic precursors and neurons are induced from ES cell-derived Rax(+) progenitors by treatment with Shh. Thus, in the absence of exogenous growth factors in medium, the ES cell-derived neuroectodermal cells spontaneously differentiate into rostral (particularly rostral-dorsal) hypothalamic-like progenitors, which generate characteristic hypothalamic neuroendocrine neurons in a stepwise fashion, as observed in vivo. These findings indicate that, instead of the addition of inductive signals, minimization of exogenous patterning signaling plays a key role in rostral hypothalamic specification of neural progenitors derived from pluripotent cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of pluripotent stem cells into hypothalamic and pituitary cells.

The hypothalamic-pituitary system is essential to maintain life and control systemic homeostasis, but it is negatively affected by various diseases, leading to serious symptoms. Embryonic stem (ES) cells differentiate into neuroectodermal progenitors when cultured as floating aggregates under serum-free conditions. Recently, our colleagues have shown that strict removal of exogenous patterning ...

متن کامل

Self-organization of neural patterns and structures in 3D culture of stem cells

Over the last several years, much progress has been made for in vitro culture of mouse and human ES cells. Our laboratory focuses on the molecular and cellular mechanisms of neural differentiation from pluripotent cells. Pluripotent cells first become committed to the ectodermal fate and subsequently differentiate into uncommitted neuroectodermal cells. Both previous mammalian and amphibian stu...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Review of Differentiation and Proliferation of Primordial Germ Cells in Culture

Primordial germ cells (PGCs) are highly specialized cell population that arises from the epiblast in vivo. There are three critical steps in the life cycle of these cells: 1-Specification 2-migration and proliferation 3-prenatal and postnatal sex specific development. Specification of germ cells in epiblast occurs due to signals secreted from extraembryonic tissues. Primordial germ cells are re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 33  شماره 

صفحات  -

تاریخ انتشار 2008